Module 6: Midterm Exam

Folder description

The Midterm Exam will be available starting at 8pm EST on 7/6 and will be due by 11:59pm EST on 7/7.

Click the folder name to access the exam file and submission link after the start time.

Technical
{
    "id": 150,
    "title": "Midterm Exam",
    "url": "https://blackboard.jhu.edu/webapps/blackboard/content/listContent.jsp?course_id=_207703_1&content_id=_8331679_1",
    "html": "\n\n<img alt=\"Content Folder\" src=\"/images/ci/sets/set01/folder_on.gif\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8331679_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n            <a href=\"/webapps/blackboard/content/listContent.jsp?course_id=_207703_1&amp;content_id=_8331679_1\"><span style=\"color:#0067AC;\">Midterm Exam</span></a>\n      </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <p>The Midterm Exam will be <strong>available starting at </strong><strong>8pm EST on 7/6</strong>&nbsp;and will be <strong>due by </strong><strong>11:59pm EST</strong><strong> on 7/7</strong>.</p> \n <p>Click the folder name to access the exam file and submission link after the start time.</p> \n</div>\n  </div>\n\n <div id=\"_8331679_1previewModule\" class=\"moduleSample\">\n </div>\n",
    "semester": null,
    "has_children": 0,
    "parent": 58,
    "rendered": {
        "title": "Midterm Exam",
        "body": "\n    <div> \n <p>The Midterm Exam will be <strong>available starting at </strong><strong>8pm EST on 7/6</strong>&nbsp;and will be <strong>due by </strong><strong>11:59pm EST</strong><strong> on 7/7</strong>.</p> \n <p>Click the folder name to access the exam file and submission link after the start time.</p> \n</div>\n  "
    }
}

Module at a Glance ObjectivesHow to Complete This Module:

Cell description

Objectives

By the end of this module, you will be able to:

  • Review what we've learned up-to-now.
  • Exhibit mastery of the material from the first half of the class on the midterm exam.

How to Complete This Module:

  1. Review the previous modules.
  2. View the video lectures.
  3. Participate in the class discussion on Piazza.
  4. Complete the Midterm Exam.
Technical
{
    "id": 255,
    "kind": "Item",
    "json": {
        "kind": "Item",
        "html": "\n\n<img alt=\"Item\" src=\"/images/ci/sets/set01/document_on.gif\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324219_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n\n     <span style=\"color:#0067ac;\">Module at a Glance</span>\n </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <h3 style=\"color: #0067ac;\"><span style=\"font-size: small;\">Objectives</span></h3> \n <p>By the end of this module, you will be able to:</p> \n <ul> \n  <li>Review what we've learned up-to-now.</li> \n  <li>Exhibit mastery of the&nbsp;material from the first half of the class on the midterm exam.</li> \n </ul> \n <h3 style=\"color: #0067ac;\"><span style=\"font-size: small;\">How to Complete This Module:</span></h3> \n <ol> \n  <li>Review the previous modules.</li> \n  <li>View the video lectures.</li> \n  <li>Participate in the class discussion on Piazza.</li> \n  <li>Complete the Midterm Exam.</li> \n </ol> \n</div>\n  </div>\n\n <div id=\"_8324219_1previewModule\" class=\"moduleSample\">\n </div>\n"
    },
    "html": "\n\n<img alt=\"Item\" src=\"/images/ci/sets/set01/document_on.gif\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324219_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n\n     <span style=\"color:#0067ac;\">Module at a Glance</span>\n </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <h3 style=\"color: #0067ac;\"><span style=\"font-size: small;\">Objectives</span></h3> \n <p>By the end of this module, you will be able to:</p> \n <ul> \n  <li>Review what we've learned up-to-now.</li> \n  <li>Exhibit mastery of the&nbsp;material from the first half of the class on the midterm exam.</li> \n </ul> \n <h3 style=\"color: #0067ac;\"><span style=\"font-size: small;\">How to Complete This Module:</span></h3> \n <ol> \n  <li>Review the previous modules.</li> \n  <li>View the video lectures.</li> \n  <li>Participate in the class discussion on Piazza.</li> \n  <li>Complete the Midterm Exam.</li> \n </ol> \n</div>\n  </div>\n\n <div id=\"_8324219_1previewModule\" class=\"moduleSample\">\n </div>\n",
    "url": null,
    "parent": 58,
    "has_attachments": 0,
    "rendered": {
        "title": "Module at a Glance\n ObjectivesHow to Complete This Module:",
        "body": "\n    <div> \n <h3><span>Objectives</span></h3> \n <p>By the end of this module, you will be able to:</p> \n <ul> \n  <li>Review what we've learned up-to-now.</li> \n  <li>Exhibit mastery of the&nbsp;material from the first half of the class on the midterm exam.</li> \n </ul> \n <h3><span>How to Complete This Module:</span></h3> \n <ol> \n  <li>Review the previous modules.</li> \n  <li>View the video lectures.</li> \n  <li>Participate in the class discussion on Piazza.</li> \n  <li>Complete the Midterm Exam.</li> \n </ol> \n</div>\n  "
    },
    "attachments": []
}

Readings

Cell description

Stein, E, & Shakarchi, R. (2003), Complex Analysis, Princeton University Press.

No new reading assignment for this week.  Please review!

Technical
{
    "id": 256,
    "kind": "Item",
    "json": {
        "kind": "Item",
        "html": "\n\n<img alt=\"Item\" src=\"/images/ci/sets/set01/document_on.gif\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324220_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n\n     <span style=\"color:#0067AC;\">Readings</span>\n </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <p>Stein, E, &amp; Shakarchi, R. (2003), <em>Complex Analysis</em><strong>,</strong> Princeton University Press.</p> \n <p>No new reading assignment for this week.&nbsp; Please review!</p> \n</div>\n  </div>\n\n <div id=\"_8324220_1previewModule\" class=\"moduleSample\">\n </div>\n"
    },
    "html": "\n\n<img alt=\"Item\" src=\"/images/ci/sets/set01/document_on.gif\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324220_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n\n     <span style=\"color:#0067AC;\">Readings</span>\n </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <p>Stein, E, &amp; Shakarchi, R. (2003), <em>Complex Analysis</em><strong>,</strong> Princeton University Press.</p> \n <p>No new reading assignment for this week.&nbsp; Please review!</p> \n</div>\n  </div>\n\n <div id=\"_8324220_1previewModule\" class=\"moduleSample\">\n </div>\n",
    "url": null,
    "parent": 58,
    "has_attachments": 0,
    "rendered": {
        "title": "Readings",
        "body": "\n    <div> \n <p>Stein, E, &amp; Shakarchi, R. (2003), <em>Complex Analysis</em><strong>,</strong> Princeton University Press.</p> \n <p>No new reading assignment for this week.&nbsp; Please review!</p> \n</div>\n  "
    },
    "attachments": []
}

Video Lectures

Cell description

To prove Cauchy's general integral formula (expressing the nth derivative of an holomorphic function in terms of a contour integral around a closed curve), we use a lemma found in Complex Analysis by Ahlfors.  Our textbook's proof is also very nice, we just exhibit a different proof here to see another way of approaching it. 

Technical
{
    "id": 257,
    "kind": "Tools Area",
    "json": {
        "kind": "Tools Area",
        "html": "\n\n<img alt=\"Tools Area\" src=\"/webapps/osv-kaltura-bb_bb60/images/gallery50.png\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324221_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n            <a href=\"/webapps/blackboard/content/launchLink.jsp?course_id=_207703_1&amp;content_id=_8324221_1&amp;mode=view\"><span style=\"color:#0067AC;\">Video Lectures</span></a>\n      </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <p>To prove Cauchy's general integral formula (expressing the nth derivative of an holomorphic function in terms of a contour integral around a closed curve), we use a lemma found in <strong>Complex Analysis</strong> by Ahlfors.&nbsp; Our textbook's proof is also very nice, we just exhibit a different proof here to see another way of approaching it.&nbsp;</p> \n <p><iframe width=\"740\" height=\"330\" src=\"https://www.kaltura.com/p/1458241/sp/145824100/embedIframeJs/uiconf_id/16721441/partner_id/1458241/widget_id/1_j84qhpek?iframeembed=true&amp;playerId=kaltura_player_&amp;flashvars[playlistAPI.kpl0Id]=1_4bdnan56&amp;flashvars[ks]=&amp;&amp;flashvars[imageDefaultDuration]=30&amp;flashvars[localizationCode]=en&amp;flashvars[leadWithHTML5]=true&amp;flashvars[forceMobileHTML5]=true&amp;flashvars[nextPrevBtn.plugin]=true&amp;flashvars[sideBarContainer.plugin]=true&amp;flashvars[sideBarContainer.position]=left&amp;flashvars[sideBarContainer.clickToClose]=true&amp;flashvars[chapters.plugin]=true&amp;flashvars[chapters.layout]=vertical&amp;flashvars[chapters.thumbnailRotator]=false&amp;flashvars[streamSelector.plugin]=true&amp;flashvars[EmbedPlayer.SpinnerTarget]=videoHolder&amp;flashvars[dualScreen.plugin]=true&amp;flashvars[playlistAPI.playlistUrl]=https://kaf.ep.jhu.edu/playlist/details/{playlistAPI.kpl0Id}/categoryid/165308111\" allowfullscreen=\"\" webkitallowfullscreen=\"\" mozallowfullscreen=\"\" allow=\"autoplay *; fullscreen *; encrypted-media *\" sandbox=\"allow-forms allow-same-origin allow-scripts allow-top-navigation allow-pointer-lock allow-popups allow-modals allow-orientation-lock allow-popups-to-escape-sandbox allow-presentation allow-top-navigation-by-user-activation\" frameborder=\"0\" title=\"Kaltura Player\"></iframe></p> \n</div>\n  </div>\n\n <div id=\"_8324221_1previewModule\" class=\"moduleSample\">\n </div>\n",
        "url": "https://blackboard.jhu.edu/webapps/blackboard/content/launchLink.jsp?course_id=_207703_1&content_id=_8324221_1&mode=view",
        "title": "Video Lectures"
    },
    "html": "\n\n<img alt=\"Tools Area\" src=\"/webapps/osv-kaltura-bb_bb60/images/gallery50.png\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324221_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n            <a href=\"/webapps/blackboard/content/launchLink.jsp?course_id=_207703_1&amp;content_id=_8324221_1&amp;mode=view\"><span style=\"color:#0067AC;\">Video Lectures</span></a>\n      </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <p>To prove Cauchy's general integral formula (expressing the nth derivative of an holomorphic function in terms of a contour integral around a closed curve), we use a lemma found in <strong>Complex Analysis</strong> by Ahlfors.&nbsp; Our textbook's proof is also very nice, we just exhibit a different proof here to see another way of approaching it.&nbsp;</p> \n <p><iframe width=\"740\" height=\"330\" src=\"https://www.kaltura.com/p/1458241/sp/145824100/embedIframeJs/uiconf_id/16721441/partner_id/1458241/widget_id/1_j84qhpek?iframeembed=true&amp;playerId=kaltura_player_&amp;flashvars[playlistAPI.kpl0Id]=1_4bdnan56&amp;flashvars[ks]=&amp;&amp;flashvars[imageDefaultDuration]=30&amp;flashvars[localizationCode]=en&amp;flashvars[leadWithHTML5]=true&amp;flashvars[forceMobileHTML5]=true&amp;flashvars[nextPrevBtn.plugin]=true&amp;flashvars[sideBarContainer.plugin]=true&amp;flashvars[sideBarContainer.position]=left&amp;flashvars[sideBarContainer.clickToClose]=true&amp;flashvars[chapters.plugin]=true&amp;flashvars[chapters.layout]=vertical&amp;flashvars[chapters.thumbnailRotator]=false&amp;flashvars[streamSelector.plugin]=true&amp;flashvars[EmbedPlayer.SpinnerTarget]=videoHolder&amp;flashvars[dualScreen.plugin]=true&amp;flashvars[playlistAPI.playlistUrl]=https://kaf.ep.jhu.edu/playlist/details/{playlistAPI.kpl0Id}/categoryid/165308111\" allowfullscreen=\"\" webkitallowfullscreen=\"\" mozallowfullscreen=\"\" allow=\"autoplay *; fullscreen *; encrypted-media *\" sandbox=\"allow-forms allow-same-origin allow-scripts allow-top-navigation allow-pointer-lock allow-popups allow-modals allow-orientation-lock allow-popups-to-escape-sandbox allow-presentation allow-top-navigation-by-user-activation\" frameborder=\"0\" title=\"Kaltura Player\"></iframe></p> \n</div>\n  </div>\n\n <div id=\"_8324221_1previewModule\" class=\"moduleSample\">\n </div>\n",
    "url": "https://blackboard.jhu.edu/webapps/blackboard/content/launchLink.jsp?course_id=_207703_1&content_id=_8324221_1&mode=view",
    "parent": 58,
    "has_attachments": 0,
    "rendered": {
        "title": "Video Lectures",
        "body": "\n    <div> \n <p>To prove Cauchy's general integral formula (expressing the nth derivative of an holomorphic function in terms of a contour integral around a closed curve), we use a lemma found in <strong>Complex Analysis</strong> by Ahlfors.&nbsp; Our textbook's proof is also very nice, we just exhibit a different proof here to see another way of approaching it.&nbsp;</p> \n  \n</div>\n  "
    },
    "attachments": [
        {
            "id": 324,
            "name": "A_Lemma.mp4",
            "location": "./attachments/cell_257/A_Lemma.mp4",
            "metadata": {
                "file": "./attachments/cell_257/A_Lemma.mp4",
                "mime": "video/mp4",
                "title": "A_Lemma.mp4",
                "icon": "file-video"
            },
            "parent": 257,
            "ordering": 0,
            "link": "./player.html?parent=58&video=./attachments/cell_257/A_Lemma.mp4&name=A_Lemma.mp4&parent_name=Video%20Lectures"
        },
        {
            "id": 325,
            "name": "Cauchy's_General_Integral_Formulas.mp4",
            "location": "./attachments/cell_257/Cauchy's_General_Integral_Formulas.mp4",
            "metadata": {
                "file": "./attachments/cell_257/Cauchy's_General_Integral_Formulas.mp4",
                "mime": "video/mp4",
                "title": "Cauchy's_General_Integral_Formulas.mp4",
                "icon": "file-video"
            },
            "parent": 257,
            "ordering": 0,
            "link": "./player.html?parent=58&video=./attachments/cell_257/Cauchy's_General_Integral_Formulas.mp4&name=Cauchy's_General_Integral_Formulas.mp4&parent_name=Video%20Lectures"
        }
    ]
}

Q&A

Cell description

Continue to ask questions and answer your classmates' questions in Piazza.

To access Piazza, click Piazza Discussions on the course menu.

Technical
{
    "id": 258,
    "kind": "Web Link",
    "json": {
        "kind": "Web Link",
        "html": "\n\n<img alt=\"Web Link\" src=\"/images/ci/sets/set01/link_on.gif\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324222_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n            <a href=\"https://piazza.com/jhu/summer2020/625703/home\" target=\"_blank\"><span style=\"color:#000000;\">Q&amp;A</span></a>\n      </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <p>Continue to ask questions and answer your classmates' questions in Piazza.</p> \n <p>To access Piazza, click <strong>Piazza&nbsp;</strong><strong></strong><strong>Discussions </strong>on the course menu.</p> \n</div>\n  </div>\n\n <div id=\"_8324222_1previewModule\" class=\"moduleSample\">\n </div>\n",
        "url": "https://piazza.com/jhu/summer2020/625703/home",
        "title": "Q&A"
    },
    "html": "\n\n<img alt=\"Web Link\" src=\"/images/ci/sets/set01/link_on.gif\" class=\"item_icon\">\n\n<div class=\"item clearfix\" id=\"_8324222_1\">\n\n <h3>\n  <span class=\"reorder editmode hideme\"><span><img src=\"/images/ci/icons/generic_updown.gif\" alt=\"\"></span></span>\n\n\n            <a href=\"https://piazza.com/jhu/summer2020/625703/home\" target=\"_blank\"><span style=\"color:#000000;\">Q&amp;A</span></a>\n      </h3>\n   \n </div>\n\n\n\n<div class=\"details\">\n    <div class=\"vtbegenerated\"> \n <p>Continue to ask questions and answer your classmates' questions in Piazza.</p> \n <p>To access Piazza, click <strong>Piazza&nbsp;</strong><strong></strong><strong>Discussions </strong>on the course menu.</p> \n</div>\n  </div>\n\n <div id=\"_8324222_1previewModule\" class=\"moduleSample\">\n </div>\n",
    "url": "https://piazza.com/jhu/summer2020/625703/home",
    "parent": 58,
    "has_attachments": 0,
    "rendered": {
        "title": "Q&A",
        "body": "\n    <div> \n <p>Continue to ask questions and answer your classmates' questions in Piazza.</p> \n <p>To access Piazza, click <strong>Piazza&nbsp;</strong><strong>Discussions </strong>on the course menu.</p> \n</div>\n  "
    },
    "attachments": []
}